5、无线技术
最开始机器人都是单独的个体,它们的记忆和解决问题的能力被自身携带的程序所限制,对它们进行更新和重新编程是一件耗时耗力的事情。而联网机器人为编程、解决问题、学习和更新提供更多可能性。得益于各种基础设施的完善,高性能无线数字通信现在随处可见,可联网的设备种类也大大增加。比如由Nest生产的智能温控器,可以使用配对的手机进行控制,并且它还能够记忆和学习并对未来环境做出调整。谷歌的Chromecast服务可以将你在电脑或手机上任意选择的内容通过无线连接展示在电视屏幕上。你知道吗,2014年全球的平均WiFi速度已经达到十兆每秒,到2018年还会翻倍。2014年,在全球范围内分布大约有4800万个公共WiFi热点;而到2018年,这一数字会再增加7倍。目前最新的WiFi标准(802.11ac)的速度为每秒千兆,和标准的蜂窝数据(5G)一致。可以预见,未来机器人通过无线技术进行交流将成为常态。
6、互联网的规模和性能成指数爆炸形式发展
无线通信设施的发展和互联网的应用将不仅仅限制在智能设备尚。现在全球互联网的每月流量已经超过88 EB(1 EB=1024 PB=1024*1024 TB),保守估计三年内还会翻番。而现在大概有130亿台设备连接到互联网上,相当于地球人的两倍;而到2019年,这个倍数将会达到3倍。
7、全球数据储存成指数形式发展
纵观全球,由于社交网络的流行,大量的图片和视频在网上流传,“比特洪流”带来了可怕又可观的流量。通过比较,人的大脑一共有10^14个突触,假设我们把每一个字节的存储量作为一个突触,那么现在全球信息就相当于1000万个大脑的储存量。
8、全球计算机能力成指数形式发展
全球计算机的运算速度已达到每秒10^21个指令。更重要的是,已经生产的数十亿个处理器(或许其中只有10亿个正在运行)可以和几个大型互联网运行数百万台带有高性能多核处理器的服务器并行计算。而任何运算都可以分成几个小部分,分开解决问题并不需要进行信息交流,问题就能够迅速被分解并解决。许多关于机器人自动化的问题都可以通过这种方式解决。
云机器人
这些技术的发展表明,机器人的数据处理不仅可以依赖本地处理器,云计算也不失为一个可行的方案。云机器人的研发已经蓄势待发,准备利用各种技术来完成机器人能力的革命。云机器人可以概括为四个理念。
1、基于记忆的自动化
计算机的运算和储存性能是满足研究人员探索机器人凭借记忆解决触发动作的基础,规划和控制是机器人自动化的关键。这并不是将指令分解为一系列为特殊情况定制的编码,而应当是在储存容量中搜寻大量先前的记忆,找出可以匹配的记忆并作出反应的方法。当没有先前的记忆可以匹配时,此前触发动作的类似记忆也可以被插入,另外也可以寻求人类的帮助,记录下人工提供的答案以供使用。此外需要一提的是信息检索技术的发展也加速了记忆技术的进步。
虽然可以依靠记忆为基础做出反应,但解决问题的记忆又从哪里来呢?
2、经验值共享
一个简单的机器人如果只凭借记忆方法学习,那会需要很长的时间;就像一个新生婴儿可能需要花数十年的时间去学习有用的事情。但是,机器人学习的时间也许会更长,因为即使是本能也可能会丢失。
尽管人脑的带宽比机器人高出一个量级,但人类与外界的交流速度比较缓慢,大约每秒只能传递10比特的信息。机器人和计算机则可以达到每秒1000兆比特,是人脑的1亿倍。基于这种外部通信速度可以利用网络通信在所有机器人之间共享所学的知识。人类花了数十年的时间学得的知识机器人眨眼可得。然而,机器人不仅可以站在任何人的肩膀上学习;在他们学得经验以后,亦可迅速分享,让其它机器人受益。
3、从想象中学习
人类常常凭借想象力对未来未知的状况进行演习和准备。同样的,一个机器人或一个“云机器人”的大脑可以利用模拟方法来探索机器人将会遇到的未来状况以及可能的解决方案,并记住那些可以解决的方案。这样的模拟不需要实践,而每个机器人的梦想都能提高所有机器人的性能;甚至我们可以制造一些专门用来做梦的机器人和智能程序。
4、学习人类
感知仍然是机器人技术中最具挑战性的难题之一。最近的一些研究让触发感知获得大量数据变得更加具有可行性,而大量的数据在计划和控制方面显得尤为重要。
可记录的视觉对象和人类活动是一个巨大的资源库,机器人很快可能利用资源库来提高它们的理解和连接世界的能力,其中包括与人类的互动。在2014年和2015年,社交媒体上一共上传了1万亿张照片,而这个数字在2015年估计还要增加数倍。现在,每分钟就有300小时的影片被上传到YouTube上。而当传感器得到大量应用之后,信息的储存量甚至还会进一步增加。
网络上最直观的信息是没有标签的,但聚焦技术可以在图像和视频中识别相似元素。打个比方,算法可以给相似的脸进行分组,然后这些分组的信息可以增强机器对其它图像和视频的理解。
什么阻碍了机器人?
人类大脑不止能存储信息和搜寻记忆,人的大脑也能感受到环境细微的变化,并对其做出反应。而这对于机器人来说则是非常困难的。每一个环境变量造成的结果都有天壤之别,机器人该如何加以区分?电脑应该如何通过记忆方法记住可以被检索的现存知识,让相似但又不相同的状况触发合适的记忆和想法?
对人脑的深入研究是机器人科学的重要课题。如何使机器人能向人脑一般聪明?有些机器学习的算法能带领我们接近这一难题。虽然问题的解决还尚待时日,但机器人数量的增长及所扮演的角色愈发重要则已是不可逆转的趋势。而当机器人革命到来之时,人类的生产方式及经济结构就将发生巨变。至于巨变之后到来的是人类生产力得以解放的黄金时代还是大量工人失业的黑暗时代,只有时间能给我们答案。
2024-08-30 02:45
2024-04-15 09:16
2024-04-09 08:56
2024-04-07 08:07
2024-03-11 11:00
2023-08-17 09:41
2023-08-14 09:40
2021-12-22 11:57
2021-07-30 08:50
2021-07-27 08:53