发布询价单
您的位置:首页 > 资讯 > 行业资讯 > 正文

中国工程院正式发布新一代智能制造理论

2018-03-03 20:15 性质:转载 作者:周济 李培根 王继祥 来源:周济 李培根 王继祥
免责声明:AGV网(www.chinaagv.com)尊重合法版权,反对侵权盗版。(凡是我网所转载之文章,文中所有文字内容和图片视频之知识产权均系原作者和机构所有。文章内容观点,与本网无关。如有需要删除,敬请来电商榷!)
摘要智能制造是一个不断演进发展的大概念,可归纳为三个基本范式:数字化制造、数字化网络化制造、数字化网络化智能化制造——新一代智能制造。新一代智能制造是新一代人工智能技术与先进制...

摘要

智能制造是一个不断演进发展的大概念,可归纳为三个基本范式:数字化制造、数字化网络化制造、数字化网络化智能化制造——新一代智能制造。新一代智能制造是新一代人工智能技术与先进制造技术的深度融合,贯穿于产品设计、制造、服务全生命周期的各个环节及相应系统的优化集成,不断提升企业的产品质量、效益、服务水平,减少资源能耗,是新一轮工业革命的核心驱动力,是今后数十年制造业转型升级的主要路径。“人-信息-物理系统”(HCPS)揭示了新一代智能制造的技术机理,能够有效指导新一代智能制造的理论研究和工程实践。基于智能制造三个基本范式次第展开、相互交织、迭代升级的特征,推进制造业智能转型应采取“并行推进、融合发展”的技术路线。

关键词: 先进制造,新一代智能制造,人-信息-物理系统,新一代人工智能,基本范式,并行推进,融合发展

1、引言

面对新一轮工业革命,《中国制造2025》明确提出,要以新一代信息技术与制造业深度融合为主线,以推进智能制造为主攻方向[1]。世界各国都在积极采取行动,美国提出“先进制造业伙伴计划”[2, 3]、德国提出“工业4.0战略计划”[4]、英国提出“工业2050”[5]、法国 提出“新工业法国计划”[6]、日本提出“社会5.0战略”[7]、韩国提出“制造业创新3.0计划”[8],都将发展智能制造作为本国构建制造业竞争优势的关键举措。

新世纪以来,新一代信息技术呈现爆发式增长,数字化网络化智能化技术在制造业广泛应用,制造系统集成式创新不断发展,形成了新一轮工业革命的主要驱动力。特别是,新一代智能制造作为新一轮工业革命的核心技术,正在引发制造业在发展理念、制造模式等方面重大而深刻的变革,正在重塑制造业的发展路径、技术体系以及产业业态,从而推动全球制造业发展步入新阶段[9-13]。

2. 智能制造的三个基本范式

广义而论,智能制造是一个大概念[10, 14],是先进信息技术与先进制造技术的深度融合,贯穿于产品设计、制造、服务等全生命周期的各个环节及相应系统的优化集成,旨在不断提升企业的产品质量、效益、服务水平,减少资源消耗,推动制造业创新、绿色、协调、开放、共享发展。


数十年来,智能制造在实践演化中形成了许多不同的相关范式,包括精益生产、柔性制造、并行工程、敏捷制造、数字化制造、计算机集成制造、网络化制造、云制造、智能化制造等[15-23],在指导制造业技术升级中发挥了积极作用。但同时,众多的范式不利于形成统一的智能制造技术路线,给企业在推进智能升级的实践中造成了许多困扰。面对智能制造不断涌现的新技术、新理念、新模式,有必要归纳总结提炼出基本范式。


智能制造的发展伴随着信息化的进步。全球信息化发展可分为三个阶段:从上世纪中叶到90年代中期,信息化表现为以计算、通讯和控制应用为主要特征的数字化阶段;从上世纪九十年代中期开始,互联网大规模普及应用,信息化进入了以万物互联为主要特征的网络化阶段;当前,在大数据、云计算、移动互联网、工业互联网集群突破、融合应用的基础上,人工智能实现战略性突破,信息化进入了以新一代人工智能技术为主要特征的智能化阶段[24]。


综合智能制造相关范式,结合信息化与制造业在不同阶段的融合特征,可以总结、归纳和提升出三个智能制造的基本范式,也就是:数字化制造、数字化网络化制造、数字化网络化智能化制造——新一代智能制造。

图 1 智能制造三个基本范式演进


2.1 数字化制造


数字化制造是智能制造的第一个基本范式,也可称为第一代智能制造。


智能制造的概念最早出现于上世纪80年代[25],但是由于当时应用的第一代人工智能技术还难以解决工程实践问题,因而那一代智能制造主体上是数字化制造。


上世纪下半叶以来,随着制造业对于技术进步的强烈需求,以数字化为主要形式的信息技术广泛应用于制造业,推动制造业发生革命性变化。数字化制造是在数字化技术和制造技术融合的背景下,通过对产品信息、工艺信息和资源信息进行数字化描述、分析、决策和控制,快速生产出满足用户要求的产品[15, 16, 26, 27]。


数字化制造的主要特征表现为:第一,数字技术在产品中得到普遍应用,形成“数字一代”创新产品;第二,广泛应用数字化设计、建模仿真、数字化装备、信息化管理;第三,实现生产过程的集成优化。


需要说明的是,数字化制造是智能制造的基础,其内涵不断发展,贯穿于智能制造的三个基本范式和全部发展历程。这里定义的数字化制造是作为第一种基本范式的数字化制造,是一种相对狭义的定位。国际上也有若干关于数字化制造的比较广义的定义和理论[28]。


2.2 数字化网络化制造

数字化网络化制造是智能制造的第二种基本范式,也可称为“互联网+制造”,或第二代智能制造[29]。


上世纪末互联网技术开始广泛应用,“互联网+”不断推进互联网和制造业融合发展,网络将人、流程、数据和事物连接起来,通过企业内、企业间的协同和各种社会资源的共享与集成,重塑制造业的价值链,推动制造业从数字化制造向数字化网络化制造转变[17, 30-33]。


数字化网络化制造主要特征表现为:第一,在产品方面,数字技术、网络技术得到普遍应用,产品实现网络连接,设计、研发实现协同与共享。第二,在制造方面,实现横向集成、纵向集成和端到端集成,打通整个制造系统的数据流、信息流。第三,在服务方面,企业与用户通过网络平台实现联接和交互,企业生产开始从以产品为中心向以用户为中心转型[34]。


德国“工业4.0”报告和美国GE“工业互联网”报告完整地阐述了数字化网络化制造范式,精辟地提出了实现数字化网络化制造的技术路线[4, 9, 31, 35-39]。


2.3 新一代智能制造——数字化网络化智能化制造

数字化网络化智能化制造是智能制造的第三种基本范式,也可称为新一代智能制造。


近年来,在经济社会发展强烈需求以及互联网的普及、云计算和大数据的涌现、物联网的发展等信息环境急速变化的共同驱动下,大数据智能、人机混合增强智能、群体智能、跨媒体智能等新一代人工智能技术加速发展,实现了战略性突破[24, 40, 41]。新一代人工智能技术与先进制造技术深度融合,形成新一代智能制造——数字化网络化智能化制造。新一代智能制造将重塑设计、制造、服务等产品全生命周期的各环节及其集成,催生新技术、新产品、新业态、新模式,深刻影响和改变人类的生产结构、生产方式乃至生活方式和思维模式,实现社会生产力的整体跃升。新一代智能制造将给制造业带来革命性的变化,将成为制造业未来发展的核心驱动力。


智能制造的三个基本范式体现了智能制造发展的内在规律:一方面,三个基本范式次第展开,各有自身阶段的特点和要重点解决的问题,体现着先进信息技术与先进制造技术融合发展的阶段性特征;另一方面,三个基本范式在技术上并不是绝然分离的,而是相互交织、迭代升级,体现着智能制造发展的融合性特征。对中国等新兴工业国家而言,应发挥后发优势,采取三个基本范式“并行推进、融合发展”的技术路线。


3. 新一代智能制造引领和推动新一轮工业革命


3.1 发展背景

当今世界,各国制造企业普遍面临着提高质量、增加效率、降低成本、快速响应的强烈需求,还要不断适应广大用户不断增长的个性化消费需求,应对资源能源环境约束进一步加大的挑战。然而,现有制造体系和制造水平已经难以满足高端化、个性化、智能化产品和服务增值升级的需求,制造业的进一步发展面临巨大瓶颈和困难。解决问题,迎接挑战,迫切需要制造业的技术创新、智能升级[14, 41]。


新一轮工业革命方兴未艾,其根本动力在于新一轮科技革命。新世纪以来,移动互联、超级计算、大数据、云计算、物联网等新一代信息技术日新月异、飞速发展[11, 12, 42-48],并极其迅速地普及应用,形成了群体性跨越。这些历史性的技术进步,集中汇聚在新一代人工智能技术的战略性突破,实现了质的飞跃[24]。新一代人工智能呈现出深度学习、跨界协同、人机融合、群体智能等新特征,为人类提供认识复杂系统的新思维、改造自然和社会的新技术。当然,新一代人工智能技术还在极速发展的进程中,将继续从“弱人工智能”迈向“强人工智能”,不断拓展人类“脑力”,应用范围将无所不在。新一代人工智能已经成为新一轮科技革命的核心技术,为制造业革命性的产业升级提供了历史性机遇,正在形成推动经济社会发展的巨大引擎。世界各国都把新一代人工智能的发展摆在了最重要的位置[49, 50]。


新一代人工智能技术与先进制造技术的深度融合,形成了新一代智能制造技术,成为了新一轮工业革命的核心驱动力。


3.2 新一代智能制造是新一轮工业革命的核心技术

科学技术是第一生产力,科技创新是经济社会发展的根本动力。第一次工业革命和第二次工业革命分别以蒸汽机和电力的发明和应用为根本动力,极大地提高了生产力,人类社会进入了现代工业社会。第三次工业革命,以计算、通讯、控制等信息技术的创新与应用为标志,持续将工业发展推向新高度[51]。


新世纪以来,数字化和网络化使得信息的获取、使用、控制以及共享变得极其快速和普及,进而,新一代人工智能突破和应用进一步提升了制造业数字化网络化智能化的水平,其最本质的特征是具备认知和学习的能力,具备生成知识和更好地运用知识的能力,这样就从根本上提高工业知识产生和利用的效率,极大地解放人的体力和脑力,使创新的速度大大加快,应用的范围更加泛在,从而推动制造业发展步入新阶段,即数字化网络化智能化制造——新一代智能制造。如果说数字化网络化制造是新一轮工业革命的开始,那么新一代智能制造的突破和广泛应用将推动形成新工业革命的高潮,将重塑制造业的技术体系、生产模式、产业形态,并将引领真正意义上的“工业4.0”,实现新一轮工业革命。


3.3 愿景

制造系统将具备越来越强大的智能,特别是越来越强大的认知和学习能力,人的智慧与机器智能相互启发性地增长,使制造业的知识型工作向自主智能化的方向发生转变,进而突破当今制造业发展所面临的瓶颈和困难。


新一代智能制造中,产品呈现高度智能化、宜人化,生产制造过程呈现高质、柔性、高效、绿色等特征,产业模式发生革命性的变化,服务型制造业与生产型服务业大发展,进而共同优化集成新型制造大系统,全面重塑制造业价值链,极大提高制造业的创新力和竞争力。


新一代智能制造将给人类社会带来革命性变化。人与机器的分工将产生革命性变化,智能机器将替代人类大量体力劳动和相当部分的脑力劳动,人类可更多地从事创造性工作;人类工作生活环境和方式将朝着以人为本的方向迈进。同时,新一代智能制造将有效减少资源与能源的消耗和浪费,持续引领制造业绿色发展、和谐发展。


4. 新一代智能制造的技术机理:“人-信息-物理系统”(HCPS)


智能制造涉及智能产品、智能生产以及智能服务等多个方面及其优化集成。从技术机理角度看,这些不同方面尽管存在差异,但本质上是一致的,下面以生产过程为例进行分析。


4.1 传统制造与“人-物理系统”


传统制造系统包含人和物理系统两大部分,是完全通过人对机器的操作控制去完成各种工作任务(如图2(a)所示)。动力革命极大提高了物理系统(机器)的生产效率和质量,物理系统(机器)代替了人类大量体力劳动。传统制造系统中,要求人完成信息感知、分析决策、操作控制以及认知学习等多方面任务,不仅对人的要求高,劳动强度仍然大,而且系统工作效率、质量和完成复杂工作任务的能力还很有限。传统制造系统可抽象描述为图2(b)所示的“人-物理系统”(HPS—Human-Physical Systems)。


4.2 数字化制造、数字化网络化制造与“人-信息-物理系统”


与传统制造系统相比,第一代和第二代智能制造系统发生的本质变化是,在人和物理系统之间增加了信息系统,信息系统可以代替人类完成部分脑力劳动,人的相当部分的感知、分析、决策功能向信息系统复制迁移,进而可以通过信息系统来控制物理系统,以代替人类完成更多的体力劳动,如图3所示。


图3 第一代和第二代智能制造系统


第一代和第二代智能制造系统通过集成人、信息系统和物理系统的各自优势,系统的能力尤其是计算分析、精确控制以及感知能力都得以很大提高。一方面,系统的工作效率、质量与稳定性均得以显著提升;另一方面,人的相关制造经验和知识转移到信息系统,能够有效提高人的知识的传承和利用效率。制造系统从传统的“人-物理系统”向 “人-信息-物理系统”(HCPS—Human-Cyber-Physical Systems)的演变可进一步用图4进行抽象描述[11, 52, 53]。


信息系统(Cyber system)的引入使得制造系统同时增加了“人-信息系统”(HCS—Human-Cyber Systems)和“信息-物理系统”(CPS—Cyber-Physical Systems)。其中,“信息-物理系统”(CPS)是非常重要的组成部分。美国在本世纪初提出了CPS的理论[54],德国将其作为工业4.0的核心技术。“信息-物理系统”(CPS)在工程上的应用是实现信息系统和物理系统的完美映射和深度融合, “数字孪生体”(Digital Twin)即是


最为基本而关键的技术,由此,制造系统的性能与效率可大大提高[13, 30, 37, 55, 56]。


图4 从“人-物理系统”到“人-信息-物理系统”


4.3 新一代智能制造与新一代“人-信息-物理系统”


新一代智能制造系统最本质的特征是其信息系统增加了认知和学习的功能,信息系统不仅具有强大的感知、计算分析与控制能力,更具有了学习提升、产生知识的能力,如图5所示。



图5 新一代智能制造系统的基本机理


在这一阶段,新一代人工智能技术将使“人-信息-物理系统”发生质的变化,形成新一代“人-信息-物理系统”(如图6所示)。主要变化在于:第一,人将部分认知与学习型的脑力劳动转移给信息系统,因而信息系统具有了“认知和学习”的能力,人和信息系统的关系发生了根本性的变化,即从“授之以鱼”发展到“授之以渔”;第二,通过“人在回路”的混合增强智能,人机深度融合将从本质上提高制造系统处理复杂性、不确定性问题的能力,极大优化制造系统的性能[52, 57]。


图6 新一代“人-信息-物理系统”


新一代“人-信息-物理系统”中,HCS、HPS和CPS都将实现质的飞跃。

上一页12

网友评论
文明上网,理性发言,拒绝广告

相关资讯

关注官方微信

手机扫码看新闻