标识符的识别方法
特征的提取与选择
在一个完善的模式识别系统中,特征的提取与选择这一技术环节是必不可少的,它通常处于对象特征数据采集和分类识别这两个环节之间,起着承上启下的作用。特征提取与选择品质的优劣极大地影响着分类器的设计和性能,它是模式识别三大核心问题之一。特征提取与选择的基本任务是如何从众多特征中找出那些最有效的特征,即把高维特征空间压缩到低维特征空间,同时保留住绝大部分样本信息,以便更有效地设计分类器。
目前,用于图像处理的特征主要有:(1)几何特征,如边缘、纹理、轮廓、焦点(或角点);(2)灰度统计特征,如灰度直方图、频谱、矩;(3)变换特征,如fourier描绘子、walsh变换系数等[1]。为了有效地完成识别或匹配,常常要求所提取的特征具有旋转不变性。关于特征不变量,一是直接从原始的目标中提取,二是从已抽取的特征中构造不变量。本文以全局特征为立足点,通过控制标识符本身的形状特征构造特征向量来实现对它的识别,采用图像的灰度均值为主要特征量实现对数字特征的提取与识别。
整个识别流程如图3所示:图像采集卡采集到一帧图像后,首先对图像进行预处理以除字符图像中的噪声、压缩冗余信息,得到规范化的点阵;然后判断当前图像中是否有导航标识符出现,如果没有则进入路径识别模块(这里假设自动导引车没有偏离导航线);反之,则判断是数字标识符还是控制标识符,如果是控制标识符则进行控制标识符识别,如果是数字标识符将采取以下步骤:(1)抽行扫描,分析每行交点数目和边界信息,确定数字标识符的感兴趣区域,(2)提取数字标识符的特征,(3)应用特征匹配法进行数字识别并输出,(4)回归导航线。
标识符分类识别
2025-02-26 08:53
2025-02-25 10:56
2025-02-25 10:46
2025-02-25 10:29
2025-02-24 22:23
2025-02-24 22:22
2025-02-24 10:31
2025-02-24 10:11
2025-02-24 09:33
2025-02-24 09:28