发布询价单
您的位置:首页 > 资讯 > 行业资讯 > 正文

机器人主流定位技术 激光SLAM与视觉SLAM谁更胜一筹?

2019-04-24 11:55 性质:转载 作者:若步智能 来源:若步智能
免责声明:AGV网(www.chinaagv.com)尊重合法版权,反对侵权盗版。(凡是我网所转载之文章,文中所有文字内容和图片视频之知识产权均系原作者和机构所有。文章内容观点,与本网无关。如有需要删除,敬请来电商榷!)
定位技术是机器人实现自主定位导航的最基本环节,是机器人在二维工作环境中相对于全局坐标的位置及其本身的姿态。目前SLAM (Simultaneous Localization and Mapping即时定位与地...


定位技术是机器人实现自主定位导航的最基本环节,是机器人在二维工作环境中相对于全局坐标的位置及其本身的姿态。目前SLAM (Simultaneous Localization and Mapping即时定位与地图构建)是业内主流的定位技术,有激光SLAM和视觉SLAM之分。


什么是激光SLAM?




激光SLAM脱胎于早期的基于测距的定位方法(如超声和红外单点测距)。激光雷达(Light Detection And Ranging)的出现和普及使得测量更快更准,信息更丰富。激光雷达采集到的物体信息呈现出一系列分散的、具有准确角度和距离信息的点,被称为点云。通常,激光SLAM系统通过对不同时刻两片点云的匹配与比对,计算激光雷达相对运动的距离和姿态的改变,也就完成了对机器人自身的定位。

激光雷达距离测量比较准确,误差模型简单,在强光直射以外的环境中运行稳定,点云的处理也比较容易。同时,点云信息本身包含直接的几何关系,使得机器人的路径规划和导航变得直观。激光SLAM理论研究也相对成熟,落地产品更丰富。


什么是视觉SLAM?





眼睛是人类获取外界信息的主要来源,视觉SLAM也具有类似特点,它可以从环境中获取海量的、富于冗余的纹理信息,拥有超强的场景辨识能力。早期的视觉SLAM基于滤波理论,其非线性的误差模型和巨大的计算量成为了它实用落地的障碍。近年来,随着具有稀疏性的非线性优化理论(Bundle Adjustment)以及相机技术、计算性能的进步,实时运行的视觉SLAM已经不再是梦想。


通常,一个视觉SLAM系统由前端和后端组成。前端负责通过视觉增量式计算机器人的位姿,速度较快。后端,主要负责两个功能:

一是在出现回环(即判定机器人回到了之前访问过的地点附近)时,发现回环并修正两次访问中间各处的位置与姿态;

二是当前端跟踪丢失时,根据视觉的纹理信息对机器人进行重新定位。简单说,前端负责快速定位,后端负责较慢的地图维护。

视觉SLAM的优点是它所利用的丰富纹理信息。例如两块尺寸相同内容却不同的广告牌,基于点云的激光SLAM算法无法区别他们,而视觉则可以轻易分辨。这带来了重定位、场景分类上无可比拟的巨大优势。同时,视觉信息可以较为容易的被用来跟踪和预测场景中的动态目标,如行人、车辆等,对于在复杂动态场景中的应用这是至关重要的。第三,视觉的投影模型理论上可以让无限远处的物体都进入视觉画面中,在合理的配置下(如长基线的双目相机)可以进行很大尺度场景的定位与地图构建。

一直以来,业内对激光SLAM与视觉SLAM到底谁更胜一筹,谁是未来主流趋势都有自己的看法,以下将简单从几个方面进行对比。


1.应用场景





从应用场景来说,视觉SLAM 的应用场景要丰富很多。视觉SLAM 在室内外环境下均能开展工作,但是对光的依赖程度高,在暗处或者一些无纹理区域是无法进行工作的。而激光 SLAM 目前主要被应用在室内,用来进行地图构建和导航工作。


2.定位和地图构建精度





在静态且简单的环境中,激光SLAM定位总体来讲优于视觉SLAM,但在较大尺度且动态的环境中,视觉SLAM因为其具有的纹理信息,表现出更好的效果。在地图构建上,激光 SLAM精度较高,国内思岚科技的 RPLIDAR 系列构建的地图精度可达到 2cm 左右。而视觉SLAM,比如大家常见的,也用的非常多的深度摄像机 Kinect,(测距范围在 3-12m 之间),地图构建精度约 3cm;所以激光 SLAM 构建的地图精度一般来说比 视觉SLAM 高,且能直接用于定位导航。


3.易用性





激光 SLAM 和基于深度相机的 视觉SLAM 均是通过直接获取环境中的点云数据,根据生成的点云数据,测算哪里有障碍物以及障碍物的距离。但是基于单目、双目、鱼眼摄像机的 视觉SLAM 方案,则不能直接获得环境中的点云,而是形成灰色或彩色图像,需要通过不断移动自身的位置,通过提取、匹配特征点,利用三角测距的方法测算出障碍物的距离。


除了上面几点之外,在探测范围、运算强度、实时数据生成、地图累计误差等方面,激光 SLAM 和视觉 SLAM 也会存在一定的差距。

比如:

注:左为激光SLAM,右为 视觉SLAM,数据来源:KITTI


可以明显看出,对于同一个场景,视觉SLAM 在后半程中出现了偏差,这是因为累积误差所引起的,所以 视觉SLAM 要进行回环检验。

总体来说,激光 SLAM 是目前比较成熟的机器人定位导航技术,而视觉 SLAM是未来研究的主流方向。未来,多传感器的融合是一种必然的趋势。取长补短,优势结合,为市场打造出真正好用的、易用的 SLAM 方案。

网友评论
文明上网,理性发言,拒绝广告

相关资讯

  • 中国新疆棉花机器人助力机械化达97%
    在全球农业向智能化转型的浪潮中,中国新疆棉花生产实现了作业模式的重大更新。近日,机器人与自动化新闻报道指出,中国新疆棉花机械化作业率已超过97%,并通过激光“摘蕾”机器人实现智能化精细管...

    2025-07-22 09:09

  • 智造共振 创领新程 2025青岛物流装备展圆满落幕,AGV网为您盘点精彩亮点
    7月17-19日,2025中国青岛国际物流装备博览会在青岛国际会展中心(红岛馆)成功举办。作为亚太地区物流装备与智能制造领域的盛会,本届展会吸引了近千家全球优质企业参展,集中展示物流装备行业的...

    2025-07-21 09:06

  • 中国AGV网本周热点回顾(2025年7月14日-7月19日)
    AGV网(www.chinaagv.com)是中国自动导航机器人(AGV)和自主移动机器人(AMR)行业网站!团队拥有超过23年的行业垂直门户运营经验,多年来见证了传统内部物料搬运从粗放化、低效率沿着更加智能化、...

    2025-07-20 08:59

  • AGV换电系统:上海洋山港 “智慧驼群” 的绿色动力核心
    7月的上海洋山四期自动化码头,155台自动导引运输车(以下简称AGV)组成的 “智慧驼群”在场地上穿梭不息。上海振华重工集团在全球港机行业首创的AGV换电系统,正以24小时全天候的高效运转,为这...

    2025-07-18 10:38

  • AI+3D扫描:机器视觉技术弥合仓储与制造的差距
    随着AI、3D扫描与机器视觉技术的成熟,仓储物流领域正迎来一次与制造业差距缩小的重要变革。专家指出,物流环境较制造更复杂,但神经网络处理、硬件平台、软件工具的进步正让物流也能拥抱高端视觉...

    2025-07-18 09:07

  • 人形机器人正加速“跑进”工厂!浦东机器人产品、场景持续上新
    近日,中科新松有限公司正式推出睿可(rico)系列的两款人形机器人产品——睿可MR73A与睿可MR73B,两款产品将移动性、环境感知力与灵巧操作能力深度融合,大幅提升了机器人在复杂动态环境中的适应...

    2025-07-15 01:14

  • 在深圳,机器人自己搭地铁送货了
    今天(7月14日)在深圳地铁2号线湾厦站一个特殊的乘客引起其他乘客的关注纷纷举起手机拍摄“回头率”拉满原来这是全球首例由机器人自主搭乘地铁配送货7月14日,在深圳地铁2号线湾厦站,北极燕鸥卡...

    2025-07-15 01:13

  • 中国AGV网本周热点回顾(2025年7月7日-7月12日)
    AGV网(www.chinaagv.com)是中国自动导航机器人(AGV)和自主移动机器人(AMR)行业网站!团队拥有超过23年的行业垂直门户运营经验,多年来见证了传统内部物料搬运从粗放化、低效率沿着更加智能化、...

    2025-07-14 14:08

  • 新质生产力在虹口|目标10000台“机器人劳务外包”,这家企业争做行业老大!
    “市场对我们产品的需求量非常大,今天被大客户临时邀请去商讨方案了”。采访当天,上海米道信息科技有限公司创始人王晨下午三点多钟才匆匆赶回公司,一连抱歉过后他道出了缘由。据介绍,该企业凭...

    2025-07-07 17:39

  • 人形机器人进驻东风柳汽“实习” 搬箱子、分拣零部件超在行
    身高1.73厘米,体重约75公斤,通体银色,一台台人形机器人在生产线上分拣物料、搬运料箱、安装零件……近日,在东风柳汽商用车智能制造工厂总装车间,来了一批超能“新员工”。这批新员工,是来自...

    2025-07-07 17:38

关注官方微信

手机扫码看新闻