发布询价单
您的位置:首页 > 资讯 > 行业资讯 > 正文

机器人4.0时代来临!四大核心技术助推大规模商用部署

2019-07-11 15:09 性质:转载 作者:智东西 来源:智东西
当前,全球机器人市场规模持续扩大,工业机器人市场增速稳定,服务机器人增速突出。2018 年,全球机器人市场规模达 298.2 亿美元, 2013-2018 年的平均增长率约为 15.1%。...

  当前,全球机器人市场规模持续扩大,工业机器人市场增速稳定,服务机器人增速突出。2018 年,全球机器人市场规模达 298.2 亿美元, 2013-2018 年的平均增长率约为 15.1%。 在装备制造领域,机械臂凭借强大的负重能力和精准的抓取操作代替着工人的双手;在物流领域,智能仓储机器人和无人搬运车不断提高着运输效率;在生活服务领域,家用清洁机器人和服务机器人正成为许多家庭的私人保姆和小秘书。

  本期的智能内参,我们推荐来自英特尔的报告, 全面阐述机器人4.0的发展情况,以及云边端融合的机器人系统和架构 。

  一、 迈向云-边-端融合的机器人4.0 时代

  1、机器人技术发展主要阶段分析

  2017年,中国信息通信研究院、 IDC 国际数据集团和英特尔共同发布的《人工智能时代的机器人3.0 新生态》白皮书把机器人的发展历程划分为三个时代,分别称之为机器人1.0、机器人2.0、机器人3.0。

机器人发展阶段示意图

  机器人1.0(1960-2000),机器人对外界环境没有感知,只能单纯复现人类的示教动作,在制造业领域替代工人进行机械性的重复体力劳动。

  机器人2.0(2000-2015), 通过传感器和数字技术的应用构建起机器人的感觉能力,并模拟部分人类功能,不但促进了机器人在工业领域的成熟应用,也逐步开始向商业领域拓展应用。

  机器人3.0(2015-),伴随着感知、计算、控制等技术的迭代升级和图像识别、自然语音处理、深度认知学习等新型数字技术在机器人领域的深入应用,机器人领域的服务化趋势日益明显,逐渐渗透到社会生产生活的每一个角落。在机器人2.0 的基础上,机器人3.0 实现从感知到认知、推理、决策的智能化进阶。

  2、 应用领域分析

  当前,全球机器人市场规模持续扩大,工业机器人市场增速稳定,服务机器人增速突出。2018 年,全球机器人市场规模达 298.2 亿美元, 2013-2018 年的平均增长率约为 15.1%。 在装备制造领域,机械臂凭借强大的负重能力和精准的抓取操作代替着工人的双手;在物流领域,智能仓储机器人和无人搬运车不断提高着运输效率;在生活服务领域,家用清洁机器人和服务机器人正成为许多家庭的私人保姆和小秘书。

  工业制造领域分析。目前,工业机器人在汽车、金属制品、电子、橡胶及塑料等行业已经得到了广泛的应用。随着性能的不断提升,以及各种应用场景的不断清晰, 2013 年以来,工业机器人的市场规模正以年均 12.1%的速度快速增长,预计到 2020 年将达到 230 亿美元的销售额。 随着人力成本的上升, 工业制造领域的应用前景良好,将会保持快速增长的势头。同时,工业机器人需要拥有更高的灵活性、更强的自主避障和快速配置的能力,提高整体产品的易用性和稳定性。

  消费服务领域分析。服务机器人虽然整体销售额低于工业机器人,但近几年一直维持着较高的年增长率,商用服务机器人在商尝银行、酒店、机场等应用场景有了更多的落地部署,主要提供导览、问询、送物等基础服务。同时,家用服务机器人悄然进入千家万户,扫地机器人销量在家用服务机器人销量中占主要份额,成为目前家务机器人中的主导品类。 由于本体能力不足, 隐私、安全方面的问题, 家庭管家机器人和陪伴型机器人的市场渗透率较低。 2013 年以来全球服务机器人市场规模年均增速达 23.5%,预计 2020 年将快速增长至 156.9 亿美元。

  从整个技术发展和市场环境看,机器人产业拥有以下发展推力:1、成熟的生态系统;2、老龄化人口趋势和新兴市场;3、更多智能产品互联和智能家庭建设;4、人工智能、自然语言理解能力的增强 。

  3、机器人4.0 的定义和发展机会

  机器人3.0 预计将在 2020 年完成, 在此之后,机器人将进入 4.0 时代, 把云端大脑分布在从云到端的各个地方,充分利用边缘计算去提供更高性价比的服务,把要完成任务的记忆场景的知识和常识很好的组合起来,实现规模化部署。机器人除了具有感知能力实现智能协作, 还具有理解和决策的能力,达到自主的服务。 在某些不确定的情况下,它需要叫远程的人进行增强,或者做一些决策辅助,但是它在 90%,甚至 95%的情况可以自主完成任务。

  要达到这一目标, 首先需要利用人工智能和5G技术。 利用人工智能技术提高机器人本体感知能力的同时, 提升个性化自然交互能力。利用5G技术, 大大缩短从终端到接入网的时间,带宽大幅度上升,很多东西可以放到边缘端,加入更多的计算能力,包括云端大脑的一些扩展,助力机器人规模化部署。

实现机器人跳跃式发展

  类似互联网的三级火箭发展模式,第一阶段关键场景, 把握垂直应用,提高场景、任务、能力的匹配,提高机器人在关键应用场景的能力,扩大用户基础;第二阶段人工增强,通过加入持续学习和场景自适应的能力,延伸服务能力,取代部分人力,逐步实现对人的替代,让机器人的能力满足用户预期; 第三阶段规模化, 通过云边端融合的机器人系统和架构,让机器人达到数百万千万级水平,从而降低价格成本,实现大规模商用。

  二、 云-边技术推动机器人结构创新

  1、 云端大脑对机器人能力的增强

  2010 年提出的云机器人概念引入了云端大脑,机器人尝试引入云计算、云存储及其它云技术,达到机器人融合基础设施和共享服务的优点。相比于独立的机器人本体,连接云端大脑后的机器人拥有以下四个核心优势。

  1)信息和知识共享: 一个云端大脑可以控制很多机器人,云端大脑可以汇集来自所有连接机器人的视觉、语音和环境信息,经云端大脑智能分析处理后的数据信息可以被所有连接机器人使用。利用云服务器,各机器人本体获取和处理的信息可以保持最新,并安全备份。

  2)平衡计算负载: 一些机器人功能需要较高的计算能力,利用云端平衡计算负载可以降低机器人本体的硬件需求,在保证能力的同时,让机器人更轻、更孝更便宜。

  3)协同合作: 通过云端大脑,机器人本体不再独立工作, 多机器人可以协同工作,例如共同搬运货物,配合完成一整套工作流程等。

  4)独立于本体持续升级: 借助云端大脑,机器人可以独立于本体持续升级,不再依赖于本体硬件设备。

  2) 边缘计算对机器人服务的提升

  IoT 应用的快速发展,使得大量数据在网络边缘产生,推动了边缘计算的产生和发展。边缘计算的提出始于4G时代,将计算和存储资源部署到网络边缘,不仅可以减少核心网和互联网上的流量,还可以显著降低传输时延, 提高网络可靠性。

  低时延的业务需要终端、移动蜂窝网(接入网和核心网)、互联网、数据中心的端到端的保障。目前的测试结果表明5G手机和基站的数据通路延时可以达到 4 毫秒,在 URLLC 模式下,手机和基站的延时可以达到 1 毫秒以下, 相比4G的 20毫秒提高了 20倍左右。对于互联网和数据中心的时延,一般情况下由于地理位置分布广和未针对低时延优化,从核心网网关到互联网数据中心可在几十到几百毫秒之间。在5G中,其核心网引入了分布式网关,网关可以下沉到基站附近,边缘服务器可以直接连接到分布式网关上,大大降低网络的端到端时延。

  边缘计算的引入将解决终端能力受限和云计算的实时响应的问题,增强机器人云端大脑的实时响应能力,对于满足机器人4.0 的要求十分关键,比如实时的推理、 场景理解、 操控等等。边缘计算和云计算的结合,将突破终端的计算能力和存储的限制,提高AI算法的训练和推理能力,比如提升精度和降低训练时间。同时将大部分机器人的智能布署在边缘和云端,通过协作和不断的训练,持续不断的提高机器人智能,比如通过边缘计算能更好的支持实时的多机协作,支持实时的知识图谱提娶理解和决策,持续不断的提高机器人的智能。边缘计算和云计算还可以解决机器人终端升级维护的困难,在机器人本体的生命周期内不断升级,提高机器人的能力, 增强数据安全和隐私保护, 充分利用摩尔定律带来的性能提升。

  3、 云-边-端一体化对机器人系统的支撑

  云边端一体化构建了一个通过机器人提供多样化服务的规模化运营平台。其中,服务机器人本体是服务的实施者,而实际功能则根据服务的需要无缝地在终端计算(机器人本体)、边缘计算和云计算之间分布和协同。机器人系统类似现在智能手机上的各种 APP,主要关注如何实现高性价比的多模态感知融合、自适应交互和实时安全计算。

  多模态感知融合: 为了支持机器人的移动、避障、交互和操作,机器人系统必须装备多种传感器(如摄像头、麦克风阵列、激光雷达、超声波等)。 同时,环境里的传感器可以补足机器人的物理空间局限性。大部分数据需要在时间同步的前提下进行处理,并且调用不同复杂度的算法模块(例如 SLAM,图像处理,人和物体的识别等)。机器人硬件系统和边缘计算需要协同来支持(可能来自多个机器人的)多传感器数据同步和计算加速,因此应该采用能灵活组合 CPU、 FPGA 和 DSA (Domain-Specific Accelerator) 的异构计算平台。另一部分没有强实时性要求的感知任务(如人的行为识别、场景识别等),可以由云计算支持。

  自适应交互: 为了支持机器人的个性化服务和持续学习能力, 需要将感知模块的输出与知识图谱结合对环境和人充分理解,并且逐步提取和积累与服务场景和个人相关的个性化知识。通用知识和较少变化的领域知识应该存放在云端,而与地域和个性化服务相关的知识应该存放在边缘或者终端。无论知识存放在哪里,在机器人系统中应该有统一的调用接口,并可以保证实时通讯。基于 ROS2 构造涵盖终端和网络侧的软件系统框架可以满足未来的需求。

  实时安全计算: 未来的服务机器人应用将有大量需要实时响应的情形(如语音交互、协同操作等),因此需要在边缘服务器部署相应的加速硬件。同时,机器人也将处理大量涉及用户隐私的数据(如视频、图像、对话等)。云边端一体化架构需要构建隐私数据的安全传输和存储机制,并且限定物理范围。对于可以进行物理操作的机器人,要构建独立的安全监测机制,保证即使机器人系统被远程攻击劫持后也不会造成物理安全损害。

  三、机器人4.0 核心技术

  在机器人3.0 时代,服务机器人可以做到一些物体识别、人脸识别,在 4.0 时代需要加上自适应能力。因为用深度学习做物体识别、人脸识别的时候需要很多的数据来源,但是真正到家庭场景时没有那么多数据, 这就要求机器人必须通过少量数据去建立识别能力,自己去找到不同的位置,不同的角度做训练。

  这些就是机器人4.0 要做的,首先对三维环境语义的理解, 在知道它是什么的基础上,把看到的信息变成知识, 让存储就变得更加合理,而且可搜索, 可查询,可关联,也可推理。应用层可以根据这个知识和观测为现场场景做出智能的提醒, 寻找物品,进行行为检测。例如,老人要出门,机器人的知识库告诉他,今天预报要下雨,但是检测到老人没有带伞,然后查询伞的位置,机器人就可以把伞送到老人手里。这都是结合内部知识和外部情况所做的决策。

  知识图谱在整个学术界和工业界越来越受到重视。获得图灵奖的杰夫 辛顿教授在加入谷歌的时候就说要建一个知识图谱给全世界用。阿里研究院发布 2019年的十大技术趋势里面也专门提到了知识图谱的重要性。这是人工智能迈向下一个阶段的必由之路,也是必做之事。

  总结下来,机器人4.0 主要有以下几个核心技术,包括云边端的无缝协同计算、 持续学习、 协同学习、 知识图谱、 场景自适应和数据安全。

机器人4.0 时代的能力升级

上一页12
免责声明:尊重合法版权,反对侵权盗版,若本网有部分文字、摄影作品等侵害了您的权益,在此深表歉意,请您立即将侵权链接及侵权信息邮件至我们的版权投诉邮箱:kf@china-forklift.com,我们会尽快与您联系并解决,谢谢您的配合.

网友评论
文明上网,理性发言,拒绝广告

相关资讯

关注官方微信

手机扫码看新闻